11 research outputs found

    Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The modern-day urban energy sector possesses the integrated operation of various microgrids located in a vicinity, named cluster microgrids, which helps to reduce the utility grid burden. However, these cluster microgrids require a precise electric load projection to manage the operations, as the integrated operation of multiple microgrids leads to dynamic load demand. Thus, load forecasting is a complicated operation that requires more than statistical methods. There are different machine learning methods available in the literature that are applied to single microgrid cases. In this line, the cluster microgrids concept is a new application, which is very limitedly discussed in the literature. Thus, to identify the best load forecasting method in cluster microgrids, this article implements a variety of machine learning algorithms, including linear regression (quadratic), support vector machines, long short-term memory, and artificial neural networks (ANN) to forecast the load demand in the short term. The effectiveness of these methods is analyzed by computing various factors such as root mean square error, R-square, mean square error, mean absolute error, mean absolute percentage error, and time of computation. From this, it is observed that the ANN provides effective forecasting results. In addition, three distinct optimization techniques are used to find the optimum ANN training algorithm: Levenberg−Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient. The effectiveness of these optimization algorithms is verified in terms of training, test, validation, and error analysis. The proposed system simulation is carried out using the MATLAB/Simulink-2021a® software. From the results, it is found that the Levenberg−Marquardt optimization algorithm-based ANN model gives the best electrical load forecasting results.Peer reviewe

    Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters

    No full text
    Steady increase in electricity consumption, fossil fuel depletion, higher erection times of conventional plants, etc., are encouraging the use of more and more onsite renewable energy. However, due to the dynamic changes in environmental factors as well as the customer load, renewable energy generation is facing issues with reliability and quality of the supply. As a solution to all these factors, renewable energy integrated cluster microgrids are being formed globally in urban communities. However, their effectiveness in generating quality power depends on the power electronic converters that are used as an integral part of the microgrids. Thus, this paper proposes the “Fuzzy Hysteresis Current Controller (FHCC)-based Inverter” for improving the power quality in renewable energy integrated cluster microgrids that are operated either in grid-connected or autonomous mode. Here, the inverter is controlled through a fuzzy logic-based hysteresis current control loop, thereby achieving superior performance. System modelling and simulations are done using MATLAB/Simulink®. The performance analysis of the proposed and conventional inverter configurations is done by computing various power quality indices, namely voltage characteristics (swell, sag, and imbalance), frequency characteristics (deviations), and total harmonic distortion. The results reveal that the proposed FHCC-based inverter achieves a better quality of power than the traditional ST-PWM-based multilevel inverter in terms of IEEE/IEC/EN global standards for renewable energy integrated cluster microgrids application

    A State Machine-Based Droop Control Method Aided with Droop Coefficients Tuning through In-Feasible Range Detection for Improved Transient Performance of Microgrids

    No full text
     The cascaded droop-voltage-current controller plays a key role in the effective operation of microgrids, where the controller performance is critically impacted by the desigheme, a constant value n of the droop controller. Moreover, in critical loading (e.g.: connection/disconnection of large inductive load), the pre-set value of the droop coefficient brings asymmetry in transient performance leading to instability. Hence, to improve symmetry by reducing the trade-off between transient response and stability margin, this paper proposes a state machine-based droop control method (SMDCM) aided with droop coefficients’ tuning through in-feasible range detection. Here, to realize the issues and the role of the droop controller’s dynamics on the microgrid’s stability, a small-signal stability analysis is conducted, thereby, an in-feasible range of droop values is identified. Accordingly, safe values for droop coefficients are implemented using the state machine concept. This proposed SMDCM is compared with the conventional constant droop control method (CDCM) and fuzzy logic-based droop control method (FLDCM) in terms of frequency/power/voltage characteristics subjected to different power factor (PF) loading conditions. From the results, it is seen that CDCM failed in many metrics under moderate and poor PF loadings. FLDCM is satisfactory under moderate PF loading, but, showed 54 Hz/48 Hz as maximum/minimum frequency values during poor PF loading. These violate the standard limit of ±2%, but SMDCM satisfactorily showed 50.02 Hz and 49.8 Hz, respectively. Besides, FLDCM levied an extra burden of 860 W on the system while it is 550 W with SMDCM. System recovery has taken 0.04 s with SMDCM, which completely failed with FLDCM. Similarly, voltage THD with FLDCM is 58.9% while with SMDCM is 3.08%. Peak voltage due to capacitive load switching is 340V with FLDCM and 150 V with SMDCM. These findings confirm that the proposed SMDCM considerably improved the transient performance of microgrids.

    Analysis and Improvements in the Key Performance Aspects of Grid Connected Microgrids

    No full text
    The microgrids are low-to-medium voltage distribution systems, which constitutes an interconnection of renewable or alternative energy sources (e.g., solar photovoltaics, wind power, fuel-cells, diesel generators, etc.), energy storage units (batteries, supercapacitors, electric vehicles, etc.), flexible loads, suitable power conversion devices, and control units. The fashion in which all these constituents are interconnected is called as an “architecture” for the microgrid. The microgrid can operate as a single entity in island mode of operation or in parallel with electric utility grid in grid-connected mode of operation. Grid-connected mode of operation is usually preferred to ensure continuous and reliable supply to the local loads. However, the microgrid should exhibit stable responses to operate in grid-connected mode, unless, it can disturb the other generators connected in parallel to it. The fruitful operation of the microgrid depends on four key aspects such as (i) intermittent nature of the energy sources due to their environmental dependency, (ii) suitable architecture selection to interconnect all the constituents, (iii) design of suitable power conversion devices, (iv) design of effective controllers. In literature, the renewable energy intermittency was addressed by considering hybrid energy source (combination of different sources instead of the single type of source) and usage of energy storage units, so that the stored energy can be used in contingencies. Similarly, three physical architectures such as central DC bus architecture, central AC bus architecture, and hybrid (AC-DC) coupled architecture (whose selection impacts the number of power converters required, power conversion efficiency and quality) were developed based on the type of major power flow (AC or DC) in the system. Moreover, various network architectures were developed by IEEE-1547, ISA-95, NIST-Grid 3.0, and IEC-61850 standard groups (whose selection impacts the communication reliability) in view of providing a hierarchical arrangement of system constituents and as well external participants in modern-day microgrids

    Islanding Detection in Grid-Connected Urban Community Multi-Microgrid Clusters Using Decision-Tree-Based Fuzzy Logic Controller for Improved Transient Response

    No full text
    The development of renewable-energy-based microgrids is being considered as a potential solution to lessen the unrelenting burden on the centralized utility grid. Furthermore, recent studies reveal that integrated multi-microgrid cluster systems developed in urban communities maximize the effectiveness of microgrids and greatly decrease the utility grid dependence. However, due to the uncertain nature of renewable energy sources and frequent load variations, these systems face issues with unintentional islanding operations. This can create severe damage to the microgrid’s performance in its stable operating condition and lead to undesired transient responses. Hence, islanding must be identified rapidly to take preventive measures to address the issue. This requires the development of a suitable anti-islanding technique that is faster in terms of accuracy and timely detection. With this intention, this paper proposes a decision-tree-based fuzzy logic (DT-FL) controller for the rapid identification of islands in an urban community multi-microgrid cluster. The DT-FL controller’s operation includes two steps. First, the decision tree extracts the electrical parameters at the point of common coupling of the multi-microgrid system. Second, these extracted parameters are utilized for the online tuning of the fuzzy logic controller, for the fast detection of islanding. The multi-microgrid cluster under study, along with the proposed islanding technique, is implemented in the MATLAB-2021a software. The efficacy of the proposed DT-FL controller is validated by comparing its performance with that of the conventional fuzzy logic controller under different test scenarios. From the results, it is observed that the proposed DT-FL controller shows superior performance in terms of the islanding detection time as well as the transient response of the system when compared with the conventional controller

    Communication Technologies for Interoperable Smart Microgrids in Urban Energy Community: A Broad Review of the State of the Art, Challenges, and Research Perspectives

    No full text
    In modern urban energy communities, diverse natured loads (homes, schools, hospitals, malls, etc.) are situated in the same locality and have self-electricity generation/management facilities. The power systems of these individual buildings are called smart microgrids. Usually, their self-electricity generation is based on renewable energy sources, which are uncertain due to their environmental dependency. So, the consistency of self-energy generation throughout the day is not guaranteed; thus, the dependency on the central utility grid is continued. To solve this, researchers have recently started working on interoperable smart microgrids (ISMs) for urban communities. Here, a central monitoring and control station captures the energy generation/demand information of each microgrid and analyzes the availability/requirement, thereby executing the energy transactions among these ISMs. Such local energy exchanges among the ISMs reduce the issues with uncertain renewable energy and the dependency on the utility grid. To establish such useful ISMs, a well-established communication mechanism has to be adopted. In this view, this paper first reviews various state-of-the-art developments related to smart grids and then provides extensive insights into communication standards and technologies, issues/challenges, and future research perspectives for ISM implementation. Finally, a discussion is presented on advanced wireless technology, called LoRa (Long Range), and a modern architecture using the LoRa technology to establish a communication network for ISMs is proposed

    Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany

    No full text
    High-quality data are always desirable for superior decision-making in smart buildings. However, latency issues, communication failures, meter glitches, etc., create data anomalies. Especially, the redundant/duplicate records captured at the same time instants are critical anomalies. Two such cases are the same timestamps with the same energy consumption reading and the same timestamps with different energy consumption readings. This causes data inconsistency that deludes decision-making and analytics. Thus, such anomalies must be properly identified. So, this paper performs an enumeration of redundant data anomalies in smart building energy consumption readings using an analytical approach with 4-phases (sub-dataset extraction, quantification, visualization, and analysis). This provides the count, distribution, type, and correlation of redundancies. Smart buildings’ energy consumption dataset of Darmstadt city, Germany, was used in this study. From this study, the highest count of redundancies is observed as 5060 on 26 January 2012 with the average count of redundancies at the hour level being 211 and the minute level being 7. Similarly, the lowest count of redundancies is observed as 89 on 24 January 2012. Further, out of these 5060 redundancies, 1453 redundancies are found with the same readings and 3607 redundancies are found with different readings. Additionally, it is identified that there are only 14 min out of 1440 min on 26 January 2012 without having any redundancy. This means that almost 99% of the minutes in the day possess some kind of redundancies, where the energy consumption readings were recorded mostly with two occurrences, moderately with three occurrences, and very few with four and five occurrences. Thus, these findings help in enhancing the quality of data for better analytics

    Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids

    No full text
    Cluster microgrids are a group of interoperable smart microgrids, connected in a local network to exchange their energy resources and collectively meet their load. A microgrid can import/export energy to the neighboring microgrid in the network based on energy deficit/availability. However, in executing such an operation, a well-established communication network is essential. This network must provide a reliable communication path between microgrids. In addition, the network must provide an optimal path between any two microgrids in the network to optimize immediate energy generation, import requirements, and export possibilities. To meet these requirements, different conventional research approaches have been used to provide reliable communication, such as backup/alternative/Hot Standby Router Protocol (HSRP)-based redundant path concepts, in addition to traditional/renowned Dijkstra algorithms, in order to find the shortest path between microgrids. The HSRP-based mechanism provides an additional path between microgrids, but may not completely solve the reliability issue, especially during multiple link failures and simultaneous failures of the actual path and redundant path. Similarly, Dijkstra algorithms discussed in the literature do not work for finding the shortest path during link failures. Thus, to enhance reliability, this paper proposes a refined network topology that provides more communication paths between microgrids, while retaining the same number of total links needed, as in conventional HSRP-based networks. In addition, this paper proposes an enhanced Dijkstra algorithm to find the optimum path during link failures. Simulations are executed using NetSimTM by implementing test cases such as single-link and multiple-link failures. The results prove that the proposed topology and method are superior to conventional approaches

    Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data

    No full text
    Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes’ energy consumption data. From the literature, it has been identified that the data imputation with machine learning (ML)-based single-classifier approaches are used to address data quality issues. However, these approaches are not effective to address the hidden issues of smart home energy consumption data due to the presence of a variety of anomalies. Hence, this paper proposes ML-based ensemble classifiers using random forest (RF), support vector machine (SVM), decision tree (DT), naive Bayes, K-nearest neighbor, and neural networks to handle all the possible anomalies in smart home energy consumption data. The proposed approach initially identifies all anomalies and removes them, and then imputes this removed/missing information. The entire implementation consists of four parts. Part 1 presents anomaly detection and removal, part 2 presents data imputation, part 3 presents single-classifier approaches, and part 4 presents ensemble classifiers approaches. To assess the classifiers’ performance, various metrics, namely, accuracy, precision, recall/sensitivity, specificity, and F1 score are computed. From these metrics, it is identified that the ensemble classifier “RF+SVM+DT” has shown superior performance over the conventional single classifiers as well the other ensemble classifiers for anomaly handling

    Critical Performance Analysis of Four-Wheel Drive Hybrid Electric Vehicles Subjected to Dynamic Operating Conditions

    No full text
    Hybrid electric vehicle technology (HEVT) is emerging as a reliable alternative to reduce the constraints of battery-only driven pure electric vehicles (EVs). HVET utilizes an electric motor as well as an internal combustion engine for its operation. These components would work on battery power and fossil fuels, respectively, as a source of energy for vehicle mobility. The power is delivered either from battery or fuel or both sources based on user requirements, road conditions, etc. HEVT uses three major propelling systems, namely, front-wheel drive (FWD), rear-wheel drive (RWD), and four-wheel drive (4WD). In these propelling systems, the 4WD model provides torque to all four wheels at the same time. It uses all four wheels to propel thereby offering better driving capability, better traction, and a strong grip on the surface. The 4WD-based HEVs comprise four architectures, namely, series, parallel, series-parallel, and complex. The literature focuses primarily on any one type of architecture for analysis in the context of component optimization, fuel reduction, and energy management. However, a focus on dynamic analysis that gives a real performance insight was not conducted, which is the main motivation for this paper. The proposed work provides an extensive critical performance analysis of all four 4WD architectures subjected to various dynamic operating conditions (continuous, pulse, and step-up accelerations). Under these conditions, various performance parameters such as speed (of vehicle, engine, and motor), power (of engine and battery), battery electrical losses, charge patterns, and fuel consumption are measured and compared. Further, the 4WD architecture performance is validated with FWD and RWD architectures. From MATLAB/Simulink-based evaluation, 4WD HEV architectures have shown superior performance in most of the cases when compared to FWD type and RWD type HEVs. Moreover, 4WD parallel HEV architecture has shown superior performance compared to 4WD series, 4WD series-parallel, and 4WD complex architectures
    corecore